Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Ejercicios de conjuntos, empresa gloria, Ejercicios de Matemáticas

Ejercicios de conjuntos con ecuaciones

Tipo: Ejercicios

2023/2024

Subido el 15/07/2025

karim-villanueva-farfan
karim-villanueva-farfan 🇦🇷

1 documento

1 / 1

Toggle sidebar

Esta página no es visible en la vista previa

¡No te pierdas las partes importantes!

bg1
Ejercicios de Conjuntos
Ejercicio: Sistema de producción y conjuntos
Contexto aplicado:
La empresa Gloria S.A. cuenta con tres plantas de producción: A, B y C. Cada una produce cierta
cantidad del producto X (en litros por día), representado por funciones.
Funciones de producción:
Planta A: f(x) = 2x + 10
Planta B: g(x) = x² − 4x + 6
Planta C: h(x) = 5x − 15
Sean los conjuntos:
A = {x | f(x) > 20 y x ≤ 10}
B = {x | g(x) < 15 y x ≤ 10}
C = {x | h(x) ≥ 10 y x ≤ 10}
Resolución:
1. Conjunto A: f(x) = 2x + 10 > 20 → x > 5 → A = {6, 7, 8, 9, 10}
2. Conjunto B: g(x) = x² − 4x + 6 < 15 → x {0, 1, 2, 3, 4, 5}
3. Conjunto C: h(x) = 5x − 15 ≥ 10 → x ≥ 5 → C = {5, 6, 7, 8, 9, 10}
4. A ∩ B =
5. (B C) − A = {0, 1, 2, 3, 4, 5}
6. (A B C) en U = {1, 2, ..., 10} =

Vista previa parcial del texto

¡Descarga Ejercicios de conjuntos, empresa gloria y más Ejercicios en PDF de Matemáticas solo en Docsity!

Ejercicios de Conjuntos

Ejercicio: Sistema de producción y conjuntos

Contexto aplicado: La empresa Gloria S.A. cuenta con tres plantas de producción: A, B y C. Cada una produce cierta cantidad del producto X (en litros por día), representado por funciones. Funciones de producción: Planta A: f(x) = 2x + 10 Planta B: g(x) = x² − 4x + 6 Planta C: h(x) = 5x − 15 Sean los conjuntos: A = {x ∈ ℕ| f(x) > 20 y x ≤ 10} B = {x ∈ ℕ| g(x) < 15 y x ≤ 10} C = {x ∈ ℕ| h(x) ≥ 10 y x ≤ 10} Resolución:

  1. Conjunto A: f(x) = 2x + 10 > 20 → x > 5 → A = {6, 7, 8, 9, 10}
  2. Conjunto B: g(x) = x² − 4x + 6 < 15 → x ∈{0, 1, 2, 3, 4, 5}
  3. Conjunto C: h(x) = 5x − 15 ≥ 10 → x ≥ 5 → C = {5, 6, 7, 8, 9, 10}
  4. A ∩ B = ∅
  5. (B ∪C) − A = {0, 1, 2, 3, 4, 5}
  6. (A ∪ B ∪ C) en U = {1, 2, ..., 10} =ᶜ ∅