Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Inverse Laplace Transform Examples, Lecture notes of Engineering

Inverse Laplace Transform Examples

Typology: Lecture notes

2022/2023

Uploaded on 05/04/2023

lanie-calabio
lanie-calabio ๐Ÿ‡ต๐Ÿ‡ญ

1 document

1 / 3

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Inverse Laplace Transform
If ๐ฟ{๐‘“(๐‘ก)} = ๐น(๐‘ ), then ๐ฟโˆ’1{๐น(๐‘ )} = ๐‘“(๐‘ก)
๐‘ญ(๐’”) ------------------------------------------------------------- ๐ฟโˆ’1{๐น(๐‘ )} = ๐’‡(๐’•)
๐’‚
๐’” ------------------------------------------------------------- ๐’‚
๐Ÿ
๐’”โˆ’๐’Œ ------------------------------------------------------------- ๐’†๐’Œ๐’•
๐’Œ
๐’”๐Ÿ+๐’Œ๐Ÿ ------------------------------------------------------------- ๐ฌ๐ข๐ง๐’Œ๐’•
๐’”
๐’”๐Ÿ+๐’Œ๐Ÿ ------------------------------------------------------------- ๐œ๐จ๐ฌ๐’Œ๐’•
๐’Œ
๐’”๐Ÿโˆ’๐’Œ๐Ÿ ------------------------------------------------------------- ๐ฌ๐ข๐ง๐ก๐’Œ๐’•
๐’”
๐’”๐Ÿโˆ’๐’Œ๐Ÿ ------------------------------------------------------------- ๐œ๐จ๐ฌ๐ก๐’Œ๐’•
๐Ÿ
๐’”๐’+๐Ÿ ------------------------------------------------------------- ๐’•๐’
๐’!
From Theorem I:
๐‘ญ(๐’” ยฑ ๐’‚) ----------------------------------------------------------- ๐’†โˆ“๐’‚๐’•๐‘ณโˆ’๐Ÿ{๐‘ญ(๐’”)}
Example:
1. ๐ฟโˆ’1 {๐‘ 
๐‘ 2โˆ’9}
๐ฟโˆ’1 {๐‘ 
๐‘ 2โˆ’9}= ๐ฟโˆ’1 {๐‘ 
๐‘ 2โˆ’(3)2}
๐ฟโˆ’1 {๐‘ 
๐‘ 2โˆ’9}= cosh3๐‘ก
2. ๐ฟโˆ’1 {15
๐‘ 2+9}
๐ฟโˆ’1 {15
๐‘ 2+9}= ๐ฟโˆ’1 {5(3)
๐‘ 2+(3)2}
๐ฟโˆ’1 {15
๐‘ 2+9}= 5๐ฟโˆ’1 {3
๐‘ 2+(3)2}
๐ฟโˆ’1 {15
๐‘ 2+9}= 5sin3๐‘ก
pf3

Partial preview of the text

Download Inverse Laplace Transform Examples and more Lecture notes Engineering in PDF only on Docsity!

Inverse Laplace Transform

If ๐ฟ{๐‘“(๐‘ก)} = ๐น(๐‘ ), then ๐ฟโˆ’1{๐น(๐‘ )} = ๐‘“(๐‘ก)

๐’” -------------------------------------------------------------^ ๐’‚

๐’”โˆ’๐’Œ -------------------------------------------------------------^ ๐’†

๐’”๐Ÿ+๐’Œ๐Ÿ^ -------------------------------------------------------------^ ๐ฌ๐ข๐ง ๐’Œ๐’•

๐’”๐Ÿ+๐’Œ๐Ÿ^ -------------------------------------------------------------^ ๐œ๐จ๐ฌ ๐’Œ๐’•

๐’”๐Ÿโˆ’๐’Œ๐Ÿ^ -------------------------------------------------------------^ ๐ฌ๐ข๐ง๐ก ๐’Œ๐’•

๐’”๐Ÿโˆ’๐’Œ๐Ÿ^ -------------------------------------------------------------^ ๐œ๐จ๐ฌ๐ก ๐’Œ๐’•

๐’”๐’+๐Ÿ^ -------------------------------------------------------------^

From Theorem I:

Example:

1. ๐ฟโˆ’1^ {

๐‘ ^2 โˆ’9}

๐ฟโˆ’1^ {

๐‘ ^2 โˆ’9} = ๐ฟ

๐‘ ^2 โˆ’(3)^2 }

๐ฟโˆ’1^ {

๐‘ ^2 โˆ’9} = cosh 3๐‘ก

2. ๐ฟโˆ’1^ {

๐‘ ^2 +9}

๐ฟโˆ’1^ {

๐‘ ^2 +9} = ๐ฟ

๐‘ ^2 +(3)^2 }

๐ฟโˆ’1^ {

๐‘ ^2 +9} = 5๐ฟ

๐‘ ^2 +(3)^2 }

๐ฟโˆ’1^ {

๐‘ ^2 +9} = 5 sin 3๐‘ก

3. ๐ฟโˆ’1^ {

๐‘ ^4 }

๐ฟโˆ’1^ {

๐‘ ^4 } = ๐ฟ

๐ฟโˆ’1^ {

๐‘ ^4 } =^

๐‘ก^3

๐ฟโˆ’1^ {

๐‘ ^4 } =^

4. ๐ฟโˆ’1^ {

(๐‘ +4)^3 }

๐ฟโˆ’1^ {

(๐‘ +4)^3 } = ๐‘’

๐‘ ^3 }

๐ฟโˆ’1^ {

(๐‘ +4)^3 } = ๐‘’

๐ฟโˆ’1^ {

(๐‘ +4)^3 } = ๐‘’

โˆ’4๐‘ก ๐‘ก^2

๐ฟโˆ’1^ {

(๐‘ +4)^3 } =^