Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

EVALUATING HIGHER ORDER DERIVATIVES, Quizzes of Algebra

In this activity, the goal is to solve for the 99th and 100th derivative by observing a pattern and exhausting some derivatives to finally come up with an answer.

Typology: Quizzes

2021/2022

Available from 01/03/2023

LesterDave
LesterDave ๐Ÿ‡ต๐Ÿ‡ญ

2 documents

1 / 2

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
TITLE: SQUEEZE THEOREM, LEFT HAND SIDE AND RIGHT AHND SIDE LIMITS
PROBLEM 1: Squeeze Theorem
Given 2๐‘ฅโˆ’2โ‰ค๐‘“(๐‘ฅ)โ‰ค๐‘ฅ2โˆ’2๐‘ฅ+2, ๐‘ฅโ‰ฅ 0.
FIND: lim
๐‘ฅโ†’2๐‘“(๐‘ฅ)
SOLUTION: This is a perfect problem where we can use the Squeeze Theorem which states that if we
have ๐‘”(๐‘ฅ) โ‰ค ๐‘“(๐‘ฅ) โ‰ค โ„Ž(๐‘ฅ) and lim
๐‘ฅโ†’๐‘Ž๐‘”(๐‘ฅ)=๐ฟ= lim
๐‘ฅโ†’๐‘Žโ„Ž(๐‘ฅ) then the lim
๐‘ฅโ†’๐‘Ž๐‘“(๐‘ฅ)=๐ฟ. In our problem, we just
need to solve for the lim
๐‘ฅโ†’2(2๐‘ฅโˆ’2) and lim
๐‘ฅโ†’2(๐‘ฅ2โˆ’2๐‘ฅ+2) and show that they are equal. Thus,
i. lim
๐‘ฅโ†’2(2๐‘ฅโˆ’2)=2(2)โˆ’2 - Apply limit by replacing x=2
= 4โˆ’2 - Simplify
= ๐Ÿ
ii.
lim
๐‘ฅโ†’2(๐‘ฅ2โˆ’2๐‘ฅ+2)= (2)2โˆ’2(2)+2
=4โˆ’4+ 2
= 2
Since the two limits are equal,
lim
๐‘ฅโ†’2(2๐‘ฅโˆ’2)โ‰คlim
๐‘ฅโ†’2๐‘“(๐‘ฅ)โ‰คlim
๐‘ฅโ†’2(๐‘ฅ2โˆ’2๐‘ฅ+2)
2 โ‰ค lim
๐‘ฅโ†’2๐‘“(๐‘ฅ)โ‰ค 2.
By Squeeze Theorem, ๐ฅ๐ข๐ฆ
๐’™โ†’๐Ÿ๐’‡(๐’™)=๐Ÿ.
PROBLEM 2. Right Hand Side and Left Hand Side Limit
GIVEN: ๐‘”(๐‘ฅ)=๐‘ฅ2+๐‘ฅโˆ’2
|๐‘ฅโˆ’1|
FIND: lim
๐‘ฅโ†’1๐‘”(๐‘ฅ)
SOLUTION:
In this case, notice that there is an absolute value involved, so we need to break this down into
two as follows:
๐‘”(๐‘ฅ)=
{
๐‘ฅ2+๐‘ฅโˆ’2
โˆ’(๐‘ฅโˆ’1) ๐‘–๐‘“ ๐‘ฅ<1
๐‘ฅ2+๐‘ฅโˆ’2
(๐‘ฅโˆ’1) ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 1
pf2

Partial preview of the text

Download EVALUATING HIGHER ORDER DERIVATIVES and more Quizzes Algebra in PDF only on Docsity!

TITLE: SQUEEZE THEOREM, LEFT HAND SIDE AND RIGHT AHND SIDE LIMITS

PROBLEM 1 : Squeeze Theorem

Given 2 ๐‘ฅ โˆ’ 2 โ‰ค ๐‘“(๐‘ฅ) โ‰ค ๐‘ฅ

2

FIND: lim

๐‘ฅโ†’ 2

SOLUTION: This is a perfect problem where we can use the Squeeze Theorem which states that if we

have ๐‘”(๐‘ฅ) โ‰ค ๐‘“(๐‘ฅ) โ‰ค โ„Ž(๐‘ฅ) and lim

๐‘ฅโ†’๐‘Ž

๐‘”(๐‘ฅ) = ๐ฟ = lim

๐‘ฅโ†’๐‘Ž

โ„Ž(๐‘ฅ) then the lim

๐‘ฅโ†’๐‘Ž

๐‘“(๐‘ฅ) = ๐ฟ. In our problem, we just

need to solve for the lim

๐‘ฅโ†’ 2

( 2 ๐‘ฅ โˆ’ 2 ) and lim

๐‘ฅโ†’ 2

2

โˆ’ 2 ๐‘ฅ + 2 ) and show that they are equal. Thus,

i. lim

๐‘ฅโ†’ 2

โˆ’ 2 - Apply limit by replacing x=

= 4 โˆ’ 2 - Simplify

ii. lim

๐‘ฅโ†’ 2

2

2

Since the two limits are equal,

lim

๐‘ฅโ†’ 2

โ‰ค lim

๐‘ฅโ†’ 2

๐‘“(๐‘ฅ) โ‰ค lim

๐‘ฅโ†’ 2

2

2 โ‰ค lim

๐‘ฅโ†’ 2

By Squeeze Theorem, ๐ฅ๐ข๐ฆ

๐’™โ†’๐Ÿ

PROBLEM 2. Right Hand Side and Left Hand Side Limit

GIVEN: ๐‘”(๐‘ฅ) =

๐‘ฅ

2

+๐‘ฅโˆ’ 2

|๐‘ฅโˆ’ 1 |

FIND: lim

๐‘ฅโ†’ 1

SOLUTION:

In this case, notice that there is an absolute value involved, so we need to break this down into

two as follows:

2

2

a. (i). lim

๐‘ฅโ†’ 1

We wish to find the limit to the right of 1 so we will use the second function,

lim

๐‘ฅโ†’ 1

๐‘”(๐‘ฅ) = lim

๐‘ฅโ†’ 1

๐‘ฅ

2

+๐‘ฅโˆ’ 2

(๐‘ฅโˆ’ 1 )

= lim

๐‘ฅโ†’ 1

(๐‘ฅ+ 2 )(๐‘ฅโˆ’ 1 )

(๐‘ฅโˆ’ 1 )

  • Factor

= lim

๐‘ฅโ†’ 1

(๐‘ฅ + 2 ) - Simplify

= 1 + 2 - Apply Limit

= 3 - Right Hand Side Limit

a. (ii). lim

๐‘ฅโ†’ 1

โˆ’

We now use the first function.

lim

๐‘ฅโ†’ 1

โˆ’

๐‘”(๐‘ฅ) = lim

๐‘ฅโ†’ 1

โˆ’

๐‘ฅ

2

+๐‘ฅโˆ’ 2

โˆ’(๐‘ฅโˆ’ 1 )

= lim

๐‘ฅโ†’ 1

โˆ’

(๐‘ฅ+ 2 )(๐‘ฅโˆ’ 1 )

โˆ’(๐‘ฅโˆ’ 1 )

  • Factor

= lim

๐‘ฅโ†’ 1

โˆ’

โˆ’(๐‘ฅ + 2 ) - Simplify

= โˆ’( 1 + 2 ) - Apply Limit

= โˆ’ 3 - Left Hand Side Limit

b. The condition is this:

lim

๐‘ฅโ†’ 1

๐‘”(๐‘ฅ) exists if the Right and Left Hand Side Limits are equal. But,

lim

๐‘ฅโ†’ 1

๐‘”(๐‘ฅ) = 3 โ‰  lim

๐‘ฅโ†’ 1

โˆ’

๐‘”(๐‘ฅ) = โˆ’ 3. Therefore, ๐ฅ๐ข๐ฆ

๐’™โ†’๐Ÿ

๐’ˆ(๐’™) does not exist (DNE).