Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Cheatsheet for Calculus Derivatives to Integration, Cheat Sheet of Mathematics

This a cheatsheet with all thee formulas necessary for Calculus.

Typology: Cheat Sheet

2016/2017

Uploaded on 03/20/2022

ikee-ng
ikee-ng 🇬🇧

1 document

1 / 5

Toggle sidebar

This page cannot be seen from the preview

Don't miss anything!

bg1
Calculus Cheat Sheet
Visit http://tutorial.math.lamar.edu for a complete set of Calculus notes. © 2005 Paul Dawkins
Integrals
Definitions
Definite Integral: Suppose
()
fx
is continuous
on
[ ]
,ab
. Divide
[ ]
,ab
into n subintervals of
width
x
and choose
*
i
x
from each interval.
Then
()
()
*
1
lim
i
n
b
ani
f x dx f x x
→∞ =
=
.
Anti-Derivative : An anti-derivative of
()
fx
is a function,
( )
Fx
, such that
( ) ( )
Fx fx
=
.
Indefinite Integral :
where
( )
Fx
is an anti-derivative of
( )
fx
.
Fundamental Theorem of Calculus
Part I : If
( )
fx
is continuous on
[]
,ab
then
( ) ( )
x
a
g x f t dt=
is also continuous on
[ ]
,ab
and
( ) ( ) ( )
x
a
d
g x f t dt f x
dx
= =
.
Part II :
( )
fx
is continuous on
[ ]
,ab
,
( )
Fx
is
an anti-derivative of
( )
fx
(i.e.
( ) ( )
F x f x dx=
)
then
( ) ( ) ()
b
a
f x dx F b F a
=
.
Variants of Part I :
()
( )
() ( )
ux
a
df t dt u x f u x
dx
=

( )
( )
( ) ( )
b
vx
df t dt v x f v x
dx
= 

( )
( )
( )
( )
[ ]
( )
[ ]
() ()
ux
vx
ux vx
dftdt uxf vxf
dx ′′
=
Properties
( ) ( ) ( ) ( )
f x g x dx f x dx g x dx±= ±
∫∫
( ) ( ) ( ) ( )
b bb
a aa
f x g x dx f x dx g x dx±= ±
∫∫
()
0
a
af x dx =
( ) ( )
ba
ab
f x dx f x dx=
∫∫
( ) ( )
cf x dx c f x dx=
∫∫
, c is a constant
() ( )
bb
aa
cf x dx c f x dx=
∫∫
, c is a constant
( )
b
a
cdx c b a=
( ) ( )
bb
aa
f x dx f x dx
∫∫
( ) ( ) ( )
b cb
a ac
f x dx f x dx f x dx
= +
∫∫
for any value of c.
If
() ( )
fx gx
on
axb
≤≤
then
( ) ( )
bb
aa
f x dx g x dx
∫∫
If
( )
0fx
on
axb
≤≤
then
( )
0
b
a
f x dx
If
( )
m fx M≤≤
on
axb≤≤
then
() ( ) ( )
b
a
mba fxdxMba
−≤
Common Integrals
k dx k x c= +
1
1
1
,1
nn
n
x dx x c n
+
+
= + ≠−
11
ln
x
x dx dx x c
= = +
∫∫
11
ln
a
ax b
dx ax b c
+
= ++
( )
ln lnu du u u u c= −+
uu
du c= +
ee
cos sinu du u c= +
sin cos
u du u c=−+
2
sec tanu du u c
= +
sec tan secu u du u c= +
csc cot cscu udu u c=−+
2
csc cotu du u c=−+
tan ln secu du u c= +
sec ln sec tanu du u u c= ++
( )
1
11
22
tan
u
aa
au
du c
+
= +
( )
1
22
1
sin
u
a
au
du c
= +
pf3
pf4
pf5

Partial preview of the text

Download Cheatsheet for Calculus Derivatives to Integration and more Cheat Sheet Mathematics in PDF only on Docsity!

Integrals

Definitions Definite Integral: Suppose f (^) ( x (^) )is continuous

on (^) [ a b , ]. Divide (^) [ a b , (^) ]into n subintervals of

width ∆ x and choose x i *from each interval.

Then (^) ( ) (^) ( *) 1

lim (^) i

b n a n (^) i f x dx f x x →∞ (^) = ∫ =^ ∑ ∆.

Anti-Derivative : An anti-derivative of f (^) ( x ) is a function, F (^) ( x (^) ), such that F ′ (^) ( x (^) ) = f (^) ( x ). Indefinite Integral : (^) ∫ f (^) ( x dx ) = F (^) ( x (^) )+ c where F (^) ( x (^) )is an anti-derivative of f (^) ( x (^) ).

Fundamental Theorem of Calculus

Part I : If f (^) ( x (^) )is continuous on (^) [ a b , ] then

( ) ( )

x a g x = (^) ∫ f t dt is also continuous on (^) [ a b , ]

and (^) ( ) ( ) ( )

x a

d g x f t dt f x dx

′ (^) = (^) ∫ =.

Part II : f (^) ( x (^) )is continuous on[ a b , ] , F (^) ( x (^) ) is

an anti-derivative of f (^) ( x (^) )( i.e. F (^) ( x (^) ) = (^) ∫ f (^) ( x dx ) )

then (^) ( ) ( ) ( )

b ∫ (^) a f^ x dx^ =^ F b^ − F^ a.

Variants of Part I :

( )

( ) ( ) ( )

u x a

d f t dt u x f u x dx ∫ =^ ′ ^ 

( ) ( ) (^ )^ (^ )

b v x

d f t dt v x f v x dx ∫ = −^ ′ ^ 

( )^ ( )

( ) ( ) [ ( )]^ ( ) [ ( )]

u x v x u x^ v x

d f t dt u x f v x f dx ∫ =^ ′^ − ′

Propertiesf^^ (^ x^ )^ ±^ g^ (^ x dx )^^ =^ ∫ f^ (^ x dx )^^ ±∫ g^ (^ x dx )

( ) ( ) ( ) ( )

b b ba (^) f^ x^ ±^ g^ x dx^ =^ ∫ (^) a f^ x dx^ ±∫ ag^ x dx

( ) 0

aa f^ x dx^ =

( ) ( )

b aa (^) f^ x dx^ = −∫ b f^ x dx

cf^^ (^ x dx )^^ = c^ ∫ f^ (^ x dx ) ,^ c^ is a constant

( ) ( )

b b ∫ (^) a cf^ x dx^ = c^ ∫ a f^ x dx ,^ c^ is a constant

( )

ba c dx^ =^ c b^ − a

( ) ( )

b b ∫ (^) a f^ x dx^ ≤∫ a f^ x^ dx

( ) ( ) ( )

b c ba (^) f^ x dx^ =^ ∫ a (^) f^ x dx^ +∫ c f^ x dx for any value of^ c.

If f (^) ( x (^) ) ≥ g (^) ( x )on axb then (^) ( ) ( )

b b ∫ (^) a f^ x dx^ ≥∫ ag^ x dx

If f (^) ( x (^) ) ≥ 0 on axb then (^) ( ) 0

ba f^ x dx^ ≥

If mf (^) ( x (^) )≤ M on axb then (^) ( ) ( ) ( )

b m ba ≤ (^) ∫ a f x dxM ba

Common Integrals ∫^ k dx^ =^ k x^ + c 1 1 1 ,^1

n n x dx (^) n x c n

∫ =^ + +^ ≠ − (^1 1) ln x dx (^) xdx x c

∫ ∫ (^1 1) ln ∫ a x + b dx^ =^ a ax^ +^ b^ + c

∫ ln^ u du^ =^ u^ ln^ (^ u^ )−^ u^ + c u (^) du = u + ce^ e

∫^ cos^ u du^ =^ sin u^ + c

∫ sin^ u du^ = −^ cos u^ + c sec^2 u du = tan u + c

∫ sec^ u^ tan^ u du^ =^ sec u^ + c

∫ csc^ u^ cot^ udu^ = −^ csc u^ + c csc^2 u du = − cot u + c

∫ tan^ u du^ =^ ln sec u^ + c

∫sec^ u du^ =^ ln sec^ u^ +^ tan u^ + c

a^2 +^1 u^2 du^ =^ a^1^ tan^ −^1 (^ ua )+ c

2 1 2 sin^1 (^ ua ) a u

duc − ∫ =^ +

Standard Integration Techniques Note that at many schools all but the Substitution Rule tend to be taught in a Calculus II class.

u Substitution : The substitution u = g (^) ( x )will convert (^) ( ( )) ( ) ( ) ( )

b g b ( ) a f^ g^ x^ g^ x dx^ g a f^ u^ du ∫ ′^ =∫ using du = g ′ ( x dx ). For indefinite integrals drop the limits of integration.

Ex.^2 ( 3 )

2 1 ∫^5 x^ cos x^ dx (^3 2 2 ) u = xdu = 3 x dxx dx = 3 du x = 1 ⇒ u = 13 = 1 :: x = 2 ⇒ u = 23 = 8

( ) (^ )

( ) ( ( ) ( ))

(^2 2 38 ) 1 13 5 8 5 3 1 3

5 cos cos

sin sin 8 sin 1

x x dx u du

u

∫ ∫

Integration by Parts : (^) ∫ u dv = uv −∫ v du and

b (^) b b ∫ (^) a u dv^ =^ uv^ a −∫ (^) av du. Choose^ u^ and^ dv^ from

integral and compute du by differentiating u and compute v using v = (^) ∫ dv.

Ex. (^) ∫ x exdx

u = x dv = e −^^ x^ ⇒ du = dx v = − ex x −^^ x^ dx = − x −^ x^ + −^ x^ dx = − xx^^ − − x + ce^ e^ ∫ e^ e^ e

Ex.

5 3 ∫ ln^ x dx ln 1 u = x dv = dxdu = (^) xdx v = x

( ( ) )

( ) ( )

5 5 5 5 3 ln^ ln^3 3 ln 3 5ln 5 3ln 3 2

x dx = x xdx = x xx

= − −

∫ ∫

Products and (some) Quotients of Trig Functions

For (^) ∫ sin n^ x cos mx dx we have the following :

1. n odd. Strip 1 sine out and convert rest to

cosines using sin^2 x = 1 − cos^2 x , then use the substitution u = cos x.

2. m odd. Strip 1 cosine out and convert rest

to sines using cos^2 x = 1 − sin^2 x , then use the substitution u = sin x.

3. n and m both odd. Use either 1. or 2. 4. n and m both even. Use double angle and/or half angle formulas to reduce the integral into a form that can be integrated.

For (^) ∫ tan n^ x sec mx dx we have the following :

1. n odd. Strip 1 tangent and 1 secant out and convert the rest to secants using tan 2 x = sec^2 x − 1 , then use the substitution u = sec x. 2. m even. Strip 2 secants out and convert rest to tangents using sec^2 x = 1 + tan^2 x , then use the substitution u = tan x. 3. n odd and m even. Use either 1. or 2. 4. n even and m odd. Each integral will be dealt with differently. Trig Formulas : sin 2( x (^) ) = 2sin (^) ( x (^) ) cos( x ), cos^2 ( x (^) ) = (^12) ( 1 + cos 2( x )), sin (^2) ( x (^) ) = (^12) ( 1 −cos 2( x ))

Ex. (^) ∫tan^3 x sec^5 x dx

( )

( ) ( )

3 5 2 4

2 4

2 4

1 7 1 5 7 5

tan sec tan sec tan sec

sec 1 sec tan sec

1 sec

sec sec

x xdx x x x xdx

x x x xdx

u u du u x

x x c

∫ ∫

Ex.

5 3

sin cos

x xdx

( )

1 2 1 2 2 2

5 4 2 2 3 3 3 2 2 3 2 2 (^2 ) 3 3

sin sin sin (sin^ )sin cos cos cos (1 cos )sin cos (1 ) (^) 1 2

cos

sec 2 ln cos cos

x x x x^ x x x x x x x u (^) u u u u

dx dx dx

dx u x

du du

x x x c

− (^) − +

∫ ∫ ∫

∫ ∫

Applications of Integrals

Net Area : (^) ( )

b af^ x dx represents the net area between^ f^ (^ x^ )and the

x -axis with area above x -axis positive and area below x -axis negative.

Area Between Curves : The general formulas for the two main cases for each are,

( ) upper function^ lower function

b y f x A (^) a dx = ⇒ = (^) ∫ ^ ^ −^  & (^) ( ) right function left function

d x f y A (^) c dy = ⇒ = (^) ∫ ^ ^ −^ 

If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases.

( ) ( )

b a A = (^) ∫ f xg x dx (^ )^ (^ )

d c A = (^) ∫ f yg y dy^ c^ ( ) ( ) b ( ) ( ) A = (^) ∫ (^) a f xg x dx + (^) ∫ cg xf x dx

Volumes of Revolution : The two main formulas are V = (^) ∫ A x dx ( ) and V = (^) ∫ A y dy ( ). Here is

some general information about each method of computing and some examples. Rings Cylinders A = π( ( outer radius ) 2 − ( inner radius)^2 ) A = 2 π( radius ) ( width / height) Limits: x / y of right/bot ring to x / y of left/top ring Limits : x / y of inner cyl. to x / y of outer cyl.

Horz. Axis use f (^) ( x (^) ),

g ( x ), A x ( )and dx.

Vert. Axis use f (^) ( y (^) ), g ( y ), A y ( )and dy.

Horz. Axis use f (^) ( y (^) ), g ( y ), A y ( )and dy.

Vert. Axis use f (^) ( x (^) ), g ( x ), A x ( ) and dx.

Ex. Axis : y = a > 0 Ex. Axis : y = a ≤ 0 Ex. Axis : y = a > 0 Ex. Axis : y = a ≤ 0

outer radius : af (^) ( x )

inner radius : ag (^) ( x )

outer radius: a + g (^) ( x ) inner radius: a + f (^) ( x )

radius : ay width : f (^) ( y (^) ) − g (^) ( y )

radius : a + y width : f (^) ( y (^) ) − g (^) ( y )

These are only a few cases for horizontal axis of rotation. If axis of rotation is the x -axis use the y = a ≤ 0 case with a = 0. For vertical axis of rotation ( x = a > 0 and x = a ≤ 0 ) interchange x and

y to get appropriate formulas.

Work : If a force of F ( x )moves an object

in a ≤ x ≤ b , the work done is ( )

b

W = ∫ aF x dx

Average Function Value : The average value

of f ( x )on a ≤ x ≤ b is 1 ( )

b

f avg = b − a ∫ a f x dx

Arc Length Surface Area : Note that this is often a Calc II topic. The three basic formulas are, b a

L = ∫ ds 2

b a

SA = ∫ π y ds (rotate about x -axis) 2

b a

SA = ∫ π x ds (rotate about y -axis)

where ds is dependent upon the form of the function being worked with as follows.

( ) (^ )

2 1 if , dy ds = + (^) dx dx y = f x axb

( ) (^ )

2 ds = 1 + dxdy dy if x = f y , ayb

2 2 if , , dx^ dy ds = (^) dt + (^) dt dt x = f t y = g t atb

2 2

ds = r + ddr θ d θ if r = f θ , a ≤ θ≤ b

With surface area you may have to substitute in for the x or y depending on your choice of ds to match the differential in the ds. With parametric and polar you will always need to substitute.

Improper Integral An improper integral is an integral with one or more infinite limits and/or discontinuous integrands. Integral is called convergent if the limit exists and has a finite value and divergent if the limit doesn’t exist or has infinite value. This is typically a Calc II topic.

Infinite Limit

1. ( ) lim ( )

t a t a f x dx f x dx →∞

∫ = ∫ 2.^ (^ )^ lim (^ )

b b t t f x dx f x dx − ∞ →−∞

c c f x dx f x dx f x dx − −

∞ ∞ ∞ ∞

∫ =^ ∫ +∫ provided BOTH integrals are convergent.

Discontinuous Integrand

1. Discont. at a : ( ) lim ( )

b b

∫ a f^ x dx^ = t → a +∫ t f^ x dx 2.^ Discont. at^ b^ :^ (^ )^ lim (^ )

b t

∫ a f^ x dx^ = t → b −∫ af^ x dx

3. Discontinuity at a < c < b : ( ) ( ) ( )

b c b

∫ a f^ x dx^ =^ ∫ a f^ x dx^ +∫ c f^ x dx provided both are convergent.

Comparison Test for Improper Integrals : If f ( x ) ≥ g ( x ) ≥ 0 on [ a , ∞ )then,

1. If a f ( x dx )

∫ conv. then^ a g^ (^ x dx )

∫ conv.^ 2.^ If^ a g^ (^ x dx )

∫ divg. then^ a f^ (^ x dx )

∫ divg.

Useful fact : If a > 0 then (^) a^1 p x dx

∫ converges if^ p^ >^1 and diverges for^ p^ ≤^1.

Approximating Definite Integrals

For given integral ( )

b a

∫ f^ x dx and a^ n^ (must be even for Simpson’s Rule) define^ ∆ x^^ =^ b^ − na and

divide [ a b , ] into n subintervals [ x 0 , x 1 ], [ x 1 , x 2 ], … , [ xn − 1 , xn ]with x 0 = a and xn = b then,

Midpoint Rule : ( ) ( 1 * ) ( * 2 ) ( *)

b

∫ a f^ x dx^ ≈ ∆ x^^ ^ f^ x^ +^ f^ x^ +^ ^ + f^ xn ,^

x i is midpoint [ xi − 1 , xi ]

Trapezoid Rule : ( ) ( 0 ) 2 ( 1 ) 2 ( 2 ) 2 ( 1 ) ( )

b a n^ n

x f x dx f x f x f x f x (^) − f x

∫ ≈^ ^ +^ + +^ +^ +^ + 

Simpson’s Rule : ( ) ( 0 ) 4 ( 1 ) 2 ( 2 ) 2 ( 2 ) 4 ( 1 ) ( )

b a n^ n^ n

x f x dx f x f x f x f x (^) − f x (^) − f x

∫ ≈^ ^ +^ +^ +^ +^ +^ + 